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Abstract. The objectives of this study were to develop and use a linked groundwater
and vegetation model to simulate groundwater and vegetation distributions in a riverine
and reservoir-fringe system under different reservoir operations scenarios. This study was
conducted where Little Stony Creek flows into East Park Reservoir on the east front of the
Coast Range, northern California. A numerical groundwater model was used to model mean
depth to groundwater during the growing season for water years 1980–1999 for each of
five community types identified on the study site. Multiple vegetation models were devel-
oped, each of which described the probability that a given community type would occur
primarily as a function of modeled mean depth to groundwater during the growing season
and secondarily as a function of flooding. Four scenarios representing four different res-
ervoir operations were simulated: existing condition, existing condition with late drawdown,
full drawdown, and full pool. A groundwater backwater effect caused by the imposed
reservoir stage extends to portions of the terrace, but the most pronounced effects occur
on the delta. Consequently, the most pronounced changes in vegetation distributions also
occur on the delta. Compared to the existing-condition scenario, modeled vegetation dis-
tributions do not change under the existing condition with late-drawdown scenario, a xeric
herbaceous community type is greatly expanded under the full-drawdown scenario, and
mesic herbaceous, scrub-shrub, and forested community types are greatly expanded under
the full-pool scenario. The results of this study are twofold. First, the linked groundwater
and vegetation model is relatively simple to construct and can be used to efficiently simulate
multiple surface-water and groundwater management scenarios. Second, changes in res-
ervoir operations can have pronounced effects on shallow groundwater and associated
vegetation distributions in riverine and reservoir-fringe systems. Thus, the effects of chang-
ing reservoir operations must be considered if the management of shallow groundwater
and associated plant and wildlife habitat resources is to be successful.

Key words: Bayesian model averaging; Bayesian model selection; Bayes’ Theorem; groundwater
modeling; MODFLOW; reservoir operations; shallow groundwater; vegetation distributions; vege-
tation modeling.

INTRODUCTION

More than 50% of the wetlands in the conterminous
United States have been lost or severely degraded due
to conversion from natural to agricultural or urban land
uses (Dahl and Allord 1996). Estimates of loss or se-
vere degradation exceed 90% for all wetland types in
California (Bertoldi and Swain 1996) and 95% for ri-
parian systems in the Sacramento Valley of California
(Greco 1999). Similar trends have been reported
throughout the world (Moser et al. 1997). Thus, res-
toration and management are considered critical com-
ponents of wetland and riparian system conservation
efforts in the United States (U.S. Environmental Pro-
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tection Agency and U.S. Department of Agriculture
1998) and throughout the world (Moser et al. 1997).

Hydrology is the primary forcing function in wetland
and riparian systems (Mitsch and Gosselink 1993) and
is the critical element in wetland and riparian system
restoration and management efforts (Kentula 1996).
Hydrology is particularly critical in riparian systems
since it is the primary mechanism by which mass and
energy are transported between uplands and down-
stream environments (Dahm et al. 1998); it is the pri-
mary control on the pathways and rates of biogeo-
chemical processing of dissolved and particulate matter
(Gosselink and Turner 1978, Vervier et al. 1993, Pusch
et al. 1998); it provides multidimensional environmen-
tal gradients that support diverse metazoan populations
which serve as critical pathways and mechanisms by
which energy is transferred in riparian food webs (Ward
et al. 1998); and it plays critical roles in tree recruit-
ment and persistence (McBride and Strahan 1984,
Dawson and Ehleringer 1991, Mensforth et al. 1994,
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FIG. 1. Regional and local settings showing the major physiographic and hydrographic features and the locations of the
regional and local-scale cross sections (A–A9 and B–B9, respectively).

van Splunder et al. 1995, Stromberg et al. 1996, Ma-
honey and Rood 1998, Scott et al. 1998, Amlin and
Rood 2002). Unfortunately, while a great deal is known
about the surface-water hydrology of wetland and ri-
parian systems, comparatively little is known about the
shallow groundwater hydrology of wetland and riparian
systems (Kentula 1996).

This study is part of a larger effort focused on the
management of surface water and shallow groundwater
and associated plant and wildlife habitat resources in
riverine and reservoir-fringe systems. The overall ob-
jective of this larger effort is to develop concepts and
tools for the planning, implementation, and monitoring
stages of riverine and reservoir management efforts. In
the first step, the primary sources of the shallow
groundwater were identified (Rains and Mount 2002).
In the second step, the roles of stream discharge, re-
gional groundwater discharge, and reservoir stage in
controlling shallow groundwater were characterized
(Rains 2002). The specific objectives of this study were
to develop and use a linked groundwater and vegetation
model to simulate groundwater and vegetation distri-
butions in a riverine and reservoir-fringe system under
different reservoir operations scenarios. Changes in
reservoir operations are of particular interest since re-
gionally unique plant and wildlife habitats in reservoir-
fringe systems can be impacted when reservoirs are
decommissioned or reservoir operations are otherwise
altered (Cairns and Palmer 1993, Shuman 1995, Chil-
ders et al. 2000).

SITE DESCRIPTION

Location and character

This study was conducted where Little Stony Creek
flows into East Park Reservoir on the east front of the

Coast Range, northern California (Fig. 1). The water-
shed area is ;119 km2. Most of the upper watershed
is below 1500 m, with maximum elevations exceeding
1800 m. Hillslopes typically vary between 15% and
75%.

Little Stony Creek flows down the east front of the
Coast Range through a narrow, high-gradient, bedrock
canyon. At the canyon mouth, Little Stony Creek flows
north through a broad, low-gradient, alluvial valley for
;3 km before discharging to East Park Reservoir. Prior
to the construction of East Park Reservoir, the site com-
prised a bedload-dominated, braided river with a broad,
alluvial terrace supporting oak savannah. East Park
Reservoir was constructed in 1910 and the subsequent
change in base level resulted in the development of a
delta where Little Stony Creek flows into East Park
Reservoir (Fig. 1). While the terrace still supports oak
savannah, the delta now supports a large, regionally
unique emergent marsh, sedge meadow, and riparian
forest complex. Long-term monitoring indicates that
the juxtaposition of these diverse habitats supports high
diversity resident and migratory bird populations in-
cluding large populations of the Tricolored Blackbird
(Agelaius tricolor), a California State Species of Spe-
cial Concern (Hamilton 1998).

Geology and hydrogeology

The Little Stony Creek alluvial valley is bound on
the west by the Franciscan Complex and underlain and
bound on the east by the Great Valley Group (Fig. 2).
Surface deposits on the terrace are floodplain silts and
sands to ;1 m. Surface deposits on the delta are flood-
plain silts and sands to ;1 m with natural levee and
crevasse splay silts and sands to ;2 m near the channel.
Shallow subsurface deposits underlying the terrace and
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FIG. 2. Regional and local-scale cross sections (A–A9 and B–B9, respectively) based upon field observations and previous
studies (Jennings and Strand 1960, Brown 1964, Rains 2002). Vertical exaggerations for the regional and local-scale cross
sections are approximately 53 and 253, respectively.

delta are channel lag and bar sands and gravels of var-
iable depths to ;3 m. The channel lag and bar sands
and gravels underlying the terrace and delta are similar
in depth and composition which indicates that they
were deposited prior to delta formation and that the
delta is primarily a surficial feature (Rains 2002). De-
scribed as a single, composite sample, the channel lag
and bar sands and gravels are very poorly sorted, sandy
medium gravels with d10, d50, and d90 of 0.6, 9.0, and
39.8 mm, respectively (where d10, d50, and d90 are the
diameters that are larger than 10%, 50% and 90% of
the grains, respectively; Rains 2002). The local ground-
water flow system is unconfined and occurs primarily
in the channel lag and bar sands and gravels. Rains
(2002) estimated the hydraulic conductivity of the local
groundwater flow system to be ;400 m/d using grain
size data and the Hazen method (Hazen 1911) which
is applicable to coarse-grained sediments where the d10

is ;0.1–3.0 mm (Fetter 1994).

Climate and hydrology

Precipitation, evapotranspiration, and stream dis-
charge are strongly seasonal with pronounced wet and
dry seasons (Rains 2002). Local shallow groundwater
is recharged primarily by Little Stony Creek water and
Franciscan Complex groundwater, with Little Stony

Creek the more prominent source of local shallow
groundwater in the wet season and Franciscan Complex
groundwater the more prominent source of local shal-
low groundwater in the dry season (Fig. 3) (Rains and
Mount 2002). Little Stony Creek is a more prominent
source of groundwater in the wet season than in the
dry season because Little Stony Creek flows continu-
ously through the study reach in the wet season and
intermittently through the study reach in the dry season.
Franciscan Complex groundwater discharges to local
shallow groundwater in both wet and dry seasons pri-
marily because the local groundwater flow system is a
regional low that lies perpendicular to the Franciscan
Complex groundwater flow path.

METHODS

Groundwater model

A numerical groundwater model was constructed us-
ing MODFLOW-2000, a block-centered finite-differ-
ence code for simulating groundwater flow systems
(Harbaugh et al. 2000). MODFLOW-2000 is a widely
used, well-documented, and verified model code (An-
derson and Woessner 1992). Simulations were run with
the Ground-Water Flow Process Basic (BCF6) package;
the Recharge (RCH), Evapotranspiration (EVT), and
the Flow and Head Boundary (FHB1) stress packages;
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FIG. 3. Conceptual model of groundwater recharge to the local groundwater flow system for hypothetical cross sections
on the lower alluvial valley near the reservoir and the upper alluvial valley near the canyon mouth. Figures are for (a) the
wet season and (b) the dry season and are modified from Rains and Mount (2002).

FIG. 4. Groundwater and vegetation model domain. The
dark line delineates the active model domain, the light lines
delineate the blocks, and the points indicate the locations of
the block-centered nodes.

and the Strongly Implicit Procedure (SIP) solver pack-
age (Leake and Lilly 1997, Harbaugh et al. 2000). Pre-
and post-processing including finite-difference grid
generation were performed with Argus ONE v. 4.2.0w,
a model-independent GIS for numerical modeling (Ar-
gus Holdings, Ltd., Herzelia, Israel).

The model domain had 202 active blocks or nodes
(Fig. 4). Node spacing was 31.62 m, with each node
representing 0.10 ha. The model domain was one layer
in thickness and was unconfined. Topographic eleva-

tion at each node was interpolated to the nearest 0.1
m from a photogrammetic survey map with 0.3-m con-
tour intervals.

The eastern boundary was the margin of the Great
Valley Group. This was a no-flow boundary because
the Great Valley Group does not contribute appreciable
inflow to the local groundwater flow system (Rains and
Mount 2002). The western and northern boundaries
were Little Stony Creek and the full-pool elevation
contour of East Park Reservoir, respectively. Ground-
water inflow and outflow on these boundaries were rep-
resented with specified-head conditions because hy-
draulic heads are functions of stream stage on the upper
reach and stream stage and reservoir stage on the lower
reach (Rains 2002). The southern boundary was a nar-
row part of the alluvial valley. This was a specified-
head boundary and was set equal to stream stage be-
cause stream stage and hydraulic heads are essentially
identical over short distances on the upper reach (Rains
2002). All specified-head boundaries were simulated
using the Flow and Head Boundary (FHB1) stress
package (Leake and Lilly 1997). The area west of Little
Stony Creek was not part of the model domain because
Little Stony Creek is bound on the west by incised
alluvial fan deposits.

Total monthly accumulated precipitation and maxi-
mum, minimum, and mean monthly temperature for
water years 1980–1999 were obtained from a joint U.S.
Bureau of Reclamation and National Oceanic and At-
mospheric Administration station located 4 km across
the reservoir near East Park Dam. Reference evapo-
transpiration was calculated using the Hargreaves equa-
tion, which provides estimates consistent with other
energy balance approaches (Hargreaves and Samani
1982, 1985, Jensen et al. 1990). Reference evapotrans-
piration was assumed to be approximately equal to ac-
tual evapotranspiration since groundwater levels are at
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or near the ground surface and well within the rooting
zones throughout most of the model period. The evap-
oration extinction depth was set at 3.3 m below the
ground surface, which is the approximate bottom of
the local groundwater flow system (Rains 2002).

Recharge from the Franciscan Complex groundwater
flow system to the local groundwater flow system was
treated as diffuse recharge to each node. Recharge from
the Franciscan Complex groundwater flow system to
the local groundwater flow system was calculated using
dry-season hydrometric (Rains 2002) and geochemical
(Rains and Mount 2002) data. When the dry-season
hydrometric and geochemical data were collected, Lit-
tle Stony Creek water and Franciscan Complex ground-
water recharged local shallow groundwater in the upper
alluvial valley, while only Franciscan Complex ground-
water recharged local shallow groundwater in the lower
alluvial valley (Fig. 3). Down-valley groundwater flow
was calculated using hydrometric data from two cross-
valley transects in the lower alluvial valley. Calculated
down-valley groundwater flow increased 23% between
the two cross-valley transects. This estimate was val-
idated using geochemical data from the two cross-val-
ley transects. The relative contributions of Little Stony
Creek water and Franciscan Complex groundwater to
local shallow groundwater were calculated with a mass-
balance mixing model using d18O as a conservative,
natural tracer (Rains and Mount 2002). The calculated
relative contribution of Franciscan Complex ground-
water increased 20% between the two cross-valley tran-
sects. Thus, hydrometric and geochemical data indi-
cated that down-valley groundwater flow increased be-
tween the two cross-valley transects by ;20% largely
due to groundwater discharge from the Franciscan
Complex groundwater flow system. The 210-m3/d in-
crease in down-valley groundwater flow between the
two cross-valley transects spread equally over the
126 000 m2 of valley floor between the two cross-valley
transects equals ;0.002 m/d of groundwater recharge.
This value was used for all time steps.

Reservoir stage for water years 1980–1999 was ob-
tained from a U.S. Bureau of Reclamation gage located
4 km across the reservoir near East Park Dam, while
stream stage for water years 1980–1999 was obtained
by combining modeling and field measurements. A syn-
thetic hydrograph for water years 1921–1998 was de-
veloped by correlating gauging station records (Searcy
1960, Searcy and Hardison 1960). Mean daily dis-
charge at Little Stony Creek above East Park Reservoir
near Lodoga, California (U.S. Geological Survey Gage
No. 11384600) was related to mean daily discharge at
Thomes Creek at Paskenta, California (U.S. Geological
Survey Gage No. 11382000) for the overlapping water
years 1967–1982. The model was calibrated with 12
randomly selected water years and validated with four
randomly selected water years. Stream stage and dis-
charge were measured hourly for water year 1999
(Rains 2002). The rating curve developed for water

year 1999 was assumed to be valid for water years
1980–1998 and was used to transform modeled dis-
charges into modeled stream stages on the study reach.
Stream stage was interpolated along the Little Stony
Creek boundary based upon hourly measurements of
surface-water slope between the upper and lower reach-
es, and the lower reach and the reservoir, taken during
water year 1999.

The model was run on one-month time steps, with
boundary conditions set to their monthly means. The
model was run to steady state because hydraulic heads
respond to changes in stream and reservoir stage in the
span of hours (Rains 2002). The growing season was
defined as being from February through August be-
cause field observations indicated that this interval en-
compassed the growing seasons for most of the species
on the site. Mean monthly hydraulic heads were av-
eraged to provide mean hydraulic heads during the
growing season. Mean hydraulic heads during the
growing season were subtracted from ground surface
elevations to provide mean depths to groundwater dur-
ing the growing season.

Vegetation sampling

Vegetation was sampled in 32 plots in late June and
early July 1999. Vegetation was sampled in nested
plots, with trees (.6 m in height) sampled in 100-m2

plots, small trees (,6 m in height) sampled in 16-m2

plots, seedlings and shrubs sampled in 4-m2 plots, and
herbs sampled in 1-m2 plots (Mueller-Dombois and El-
lenberg 1974). In each plot, species composition was
recorded with identification and nomenclature consis-
tent with The Jepson Manual (Hickman 1993). Three
observers independently estimated raw percent cover,
the raw percent cover estimates were averaged, and
abundance values were assigned based upon modified
Daubenmire cover classes: ,1%, 1–5%, 6–15%, 16–
25%, 26–50%, 51–75%, 76–95%, and .95%. Cover
classes were converted to cover class midpoints for data
analyses.

Vegetation classification

Two-way indicator species analysis (TWINSPAN;
Hill 1979) was used to classify the 32 vegetation plots
into five community types. Uncommon, low-abundance
species can have disproportionate effects in classifi-
cation efforts. One possible result is that plots that share
uncommon, low-abundance species may be classified
together even if they have little or nothing else in com-
mon and have no meaningful ecological relationship
(Zedler 1977, Pasternack et al. 2000). To reduce the
possibility of this occurrence, each species was as-
signed its maximum observed raw percent cover value
and the values were plotted cumulatively. A substantial
change in slope was considered indicative of the pres-
ence of groups of uncommon, low-abundance species
and common, high-abundance species. The uncommon,
low-abundance species, in this case those species with
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no occurrences that equaled or exceeded 5%, were
omitted from the classification effort. The complete
matrix of species composition and abundance was re-
stored following the classification effort, thereby re-
storing uncommon, low-abundance species to the com-
munity type descriptions.

Vegetation model

A vegetation model was constructed based on direct
gradient analysis, in which vegetation distributions are
assumed to be functions of environmental gradients
(Whittaker 1967, Jongman et al. 1987, ter Braak and
Prentice 1988). Though the specific modeling approach
differs, this modeling effort nevertheless builds on pre-
vious efforts to model riparian vegetation as a function
of surface water or groundwater in riparian ecosystems
(Franz and Bazzaz 1977, Auble et al. 1994, Springer
et al. 1999, Primack 2000). Most previous efforts em-
ployed direct gradient analysis and a single environ-
mental gradient. Auble et al. (1994) and Primack
(2000) modeled community types as functions of in-
undation duration using probabilistic approaches in
which the probability that a given community type
would occur in a given arbitrary inundation duration
class was determined by field observations. Springer
et al. (1999) modeled potential woody riparian vege-
tation establishment zones as functions of minimum
and maximum depths to groundwater, the minimum and
maximum depths to groundwater being determined
from observational data from previous regional studies.
Franz and Bazzaz (1977) modeled individual species
as functions of elevation relative to stream stage using
a probabilistic approach where species distributions
were assumed to be described by normal density func-
tions defined by sample means and standard deviations.

The approach employed in this study is most similar
to the approach employed by Franz and Bazzaz (1977).
The primary difference in this study is that two gra-
dients are employed since community types are mod-
eled primarily as functions of mean depth to ground-
water during the growing season and secondarily as
functions of flooding. The groundwater model was used
to model mean depth to groundwater during the grow-
ing season for water years 1980–1999 at each of the
32 vegetation plots. These data were used to calculate
sample means and standard deviations of the mean
depth to groundwater during the growing season for
each community type. The probability that a commu-
nity type would occur as a function of mean depth to
groundwater during the growing season was calculated
using Bayes’ Theorem:

f (d z g)p(g)
p(g z d) 5

f (d z g)p(g)O
where p(g z d) was the posterior probability that a com-
munity type, g, would occur as a function of mean depth
to groundwater during the growing season, d; f(d z g)
was a function describing the distribution of the mean

depths to groundwater during the growing season, d,
in a community type, g; and p(g) was the prior prob-
ability that a community type, g, would occur inde-
pendent of the mean depth to groundwater during the
growing season, d. The functions, f, were assumed to
be normal density functions with means and standard
deviations equal to the sample means and standard de-
viations of the modeled mean depth to groundwater
during the growing season in each sampled community
type. With one exception, the prior probabilities were
set equal to one another, i.e., were set such that the
probability of occurrence of each community type was
based solely on mean depth to groundwater during the
growing season. The one exception was that one com-
munity type, riverine forest, only occurred where sur-
face water flooding occurred. Thus, the prior proba-
bility of riverine forest was set to zero in terrace blocks
where surface water flooding does not occur.

This approach resulted in multiple models. Each
model described the probability that a given commu-
nity type would occur primarily as a function of mod-
eled mean depth to groundwater during the growing
season and secondarily as a function of flooding. Mod-
els were employed block-by-block using Bayesian
model selection and Bayesian model averaging (Hoet-
ing et al. 1999, Wasserman 2000). In Bayesian model
selection, modeled groundwater data were used to se-
lect the single best model from the suite of models,
while in Bayesian model averaging, modeled ground-
water data were used to average the results from the
suite of models. In Bayesian model selection, the com-
munity type with the highest probability of occurrence
was assigned to the entire block. In Bayesian model
averaging, the probabilities of occurrence of each com-
munity type were used as weights that were multiplied
by the area of the entire block to provide weighted
averages of each community type. These probabilities
also were used to calculate variances since, if the prob-
ability of community type, g, occurring at block i, is
pgi, then the variance is pgi(12 pgi). Bayesian model
selection results were used for graphical output where
each block had to be assigned to a discrete community
type. Bayesian model averaging results were used for
tabular output.

Scenarios

The growing season was simulated for four scenarios
representing four different reservoir operations: exist-
ing condition, existing condition with late drawdown,
full drawdown, and full pool. Mean monthly stream
stages for water years 1980–1999 were used in all sim-
ulations. In the existing-condition scenario, mean
monthly reservoir stages for water years 1980–1999
were used for all months. Results of the existing-con-
dition scenario were used to generally validate the
Bayesian model selection results and to provide base-
line data for further comparisons. In the existing con-
dition with late-drawdown scenario, mean monthly res-
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FIG. 5. Groundwater backwater effect for (a) modeled and (b) measured cases. The groundwater backwater effect is
largely restricted to the delta in both modeled and measured cases. In (a), H stands for hydraulic head, or the fluid potential
for flow through porous media. Water flows from areas of high hydraulic head to areas of low hydraulic head. In the special
cases illustrated here, H is also the water table elevation. Fig. 5b is from Rains (2002).

ervoir stages for water years 1980–1999 were used for
the months of February through June, then a completely
drained reservoir was used for the months of July
through September. For the full-drawdown and full-
pool scenarios, completely drained and completely full
reservoirs were used for all months, respectively.

RESULTS

Groundwater modeling

The groundwater model was generally validated by
comparing modeled inflows and hydraulic heads to es-
timated inflows and measured hydraulic heads for 15
March 1999 and 19 July 1999, these two days being
well studied and representative of wet- and dry-season
conditions, respectively (Rains 2002). The model was
run to steady state with boundary conditions set to their
daily means. Model results were generally validated by
comparing modeled and estimated inflows to the model
domain, and by comparing modeled and measured hy-
draulic heads with paired t tests using StatView for
Windows v. 5.0.1 (SAS Institute, Inc., Cary, North Car-
olina, USA). Modeled and estimated inflows to the
model domain were within 3% and 20% of one another
on 15 March 1999 and 19 July 1999, respectively.
These discrepancies were considered acceptable since
there are substantial uncertainties, particularly with re-
spect to inflows due to groundwater recharge from Lit-
tle Stony Creek and the Franciscan Complex ground-
water flow system and outflows due to evapotranspi-
ration. Modeled and measured groundwater levels were
not significantly different on either 15 March 1999 (P
5 0.012) or 19 July 1999 (P , 0.001).

The groundwater model was only generally validat-
ed, so results should be interpreted with caution. Sim-
ulation results indicate that a groundwater backwater
effect caused by the imposed reservoir stage extends
up valley, and that the geographic extent and degree

of this groundwater backwater effect is dependent upon
reservoir operations. The groundwater backwater effect
can be seen in a scattergram of mean modeled hydraulic
heads at each model node for the full-pool and full-
drawdown scenarios (Fig. 5). All nodes that plot above
the 1:1 line are affected by the groundwater backwater
effect. The groundwater backwater effect is largely
confined to the delta, with the largest effect on the
lower delta where hydraulic heads for the full-pool sce-
nario exceed hydraulic heads for the full-drawdown
scenario by more than 1 m. The physical effect of this
groundwater backwater effect can be seen in a longi-
tudinal cross section of ground surface, measured hy-
draulic head on 15 March 1999, and the approximate
bedrock contact (Fig. 5) (Rains 2002). Groundwater
flows down the valley, encounters the reservoir, and
flows upward where it accumulates in shallow ground-
water storage prior to discharging at or near the res-
ervoir fringe. This creates a stable, shallow ground-
water environment on the lower delta.

Existing vegetation

There were 62 vascular plant species observed in the
32 plots. Most observed species are typical to alluvial
valleys and riparian areas throughout California (Hick-
man 1993, Sawyer and Keeler-Wolf 1995). Three
TWINSPAN divisions separated the 32 plots into five
community types that were arranged along a gradient
of mean depth to groundwater during the growing sea-
son: grassland, riverine forest, sedge meadow, willow
forest, and emergent marsh (Figs. 6 and 7, Table 1).

Grassland is a species-poor, herbaceous community
type dominated by xeric grasses and herbs. The most
common species are Bromus hordeaceous and Centau-
rea solstitialis. There also are widely scattered Quercus
lobata, though none occurred in the vegetation plots.
This community type would be classified as California
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FIG. 6. Species composition and mean percent cover in the plots for (a) grassland, (b) riverine forest, (c) sedge meadow,
(d) willow forest, and (e) emergent marsh.



200 MARK CABLE RAINS ET AL. Ecological Applications
Vol. 14, No. 1

FIG. 7. Groundwater levels relative to ground surface dur-
ing the growing season in each community type (means 6 1
SD). H stands for hydraulic head, or the fluid potential for
flow through porous media. Water flows from areas of high
hydraulic head to areas of low hydraulic head. In the special
cases illustrated here, H is also the water table elevation.

TABLE 1. Percent cover by taxa of given wetland indicator status (Reed 1988) in each of the
community types.

Community type ND NL UPL FACU FAC FACW OBL

Grassland
Riverine forest
Sedge meadow
Willow forest
Emergent marsh

1
2
1
6
4

17
32

0
0
0

0
0
0
0
0

77
4
6
0
0

5
31
49

0
0

0
28
36
43

0

0
3
8

51
96

Note: ND 5 no data, due to unknown taxonomy; NL 5 not listed, often assumed to be
upland; UPL 5 upland, ,1% occurrence in wetlands; FACU 5 facultative upland, 1–33%
occurrence in wetlands; FAC 5 facultative, .33–66% occurrence in wetlands; FACW 5 fac-
ultative wetland, .66–99% occurrence in wetlands; OBL 5 obligate, .99% occurrence in
wetlands.

annual grassland series by Sawyer and Keeler-Wolf
(1995). Grassland occurs exclusively on the terrace
where groundwater is relatively deep and flooding does
not occur. Modeled mean and standard deviation of the
mean depth to groundwater during the growing season
are 1.06 m and 0.26 m, respectively.

Riverine forest is a species-rich, multistoried, for-
ested community type. The most common trees are
Quercus lobata, Salix lasiolepis, and Fraxinus latifolia,
the most common shrubs are Rhus trilobata, Rosa cal-
ifornica, and Baccharis salicifolia, and the most com-
mon herbs are Elytrigia repens and Conium maculatum.
This community type would be classified as valley oak
series by Sawyer and Keeler-Wolf (1995). Riverine for-
est occurs exclusively on well-drained flood deposits
such as active floodplains, natural levees, and crevasse
splays. Modeled mean and standard deviation of the
mean depth to groundwater during the growing season
are 0.77 m and 0.21 m, respectively.

Sedge meadow is a densely vegetated, herbaceous
community type dominated by mesic to xeric grasses
and herbs. The most common species are Carex sp.,
Lolium perrene, and Lotus corniculatus. This com-
munity type would be classified as either sedge meadow
or introduced perennial grassland series by Sawyer and

Keeler-Wolf (1995). Sedge meadow occurs on scoured
areas of the upper to middle delta such as abandoned
floodways and abandoned channels. Modeled mean and
standard deviation of the mean depth to groundwater
during the growing season are 0.48 m and 0.17 m,
respectively.

Willow forest is a species-poor, scrub-shrub to for-
ested community type. The only trees and shrubs are
mixed Salix spp., which could not be identified to spe-
cies due to a near-complete lack of catkins, and the
most commons herbs are Typha domingensis and Lem-
na sp. This community type would be classified as
mixed willow series by Sawyer and Keeler-Wolf
(1995). Willow forest occurs on the reservoir fringe
and on scoured areas on the middle to lower delta such
as an abandoned floodway and an abandoned channel.
Modeled mean and standard deviation of the mean
depth to groundwater during the growing season are
0.27 m and 0.26 m, respectively.

Emergent marsh is a species-poor, herbaceous com-
munity type dominated by mesic grasses and herbs.
The most commons species are Typha domingensis,
Eleocharis sp., and Myriophyllum aquaticum. This
community type would be classified as cattail series by
Sawyer and Keeler-Wolf (1995). Emergent marsh oc-
curs on the reservoir fringe and on scoured surfaces on
the middle to lower delta such as an abandoned chan-
nel. Modeled mean and standard deviation of the mean
depth to groundwater during the growing season are
20.07 m (i.e., 0.07 m above the ground surface) and
0.38 m, respectively.

Vegetation modeling

The vegetation model comprises multiple models,
each of which describes the probability that a given
community type will occur primarily as a function of
mean depth to groundwater during the growing season
and secondarily as a function of flooding. There are
two separate model outputs, one for the floodplain and
delta where the prior probabilities for each community
type are set equal to one another, and one for the terrace
where the prior probability of riverine forest is set to
zero while the prior probabilities of the remaining com-
munity types are set equal to one another (Fig. 8).
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FIG. 8. Bayesian model output for (a) the floodplain and delta and (b) the terrace.

TABLE 2. Error matrix along with producer, user, and overall accuracies for the Bayesian
model selection procedure.

Classification
data

Reference data

G RF SM WF EM Total

Accuracy

Producer User

G
RF
SM
WF
EM
Total

5
0
0
0
0
5

0
12

3
0
0

15

0
0
7
0
1
8

0
0
0
1
0
1

0
0
0
0
1
1

5
12
10

1
2

30

1.00
0.80
0.88
1.00
1.00

1.00
1.00
0.70
1.00
0.50

Notes: G 5 grassland, RF 5 riverine forest, SM 5 sedge meadow, WF 5 willow forest,
and EM 5 emergent marsh. Overall accuracy 5 0.87.

The results of the Bayesian model selection proce-
dure were generally validated by comparison to exist-
ing conditions. The 32 blocks used in vegetation model
calibration were omitted, and 30 of the remaining 170
blocks were randomly selected for the validation pro-
cedure. The results are summarized in an error matrix
along with the producer, user, and overall accuracies
(Table 2; Lilles and Kiefer 1994). The overall accuracy
of the Bayesian model selection effort was 0.87. The
errors were three riverine forest blocks and one emer-
gent marsh block, all four of which were incorrectly
classified as sedge meadow. The results of the Bayesian
model averaging procedure were not validated since
existing areas of the five community types are un-
known.

The Bayesian model selection results were only gen-
erally validated, and the Bayesian model averaging re-
sults were not validated at all, so these results should
be interpreted with caution. The Bayesian model se-
lection and Bayesian model averaging results are pre-
sented in Fig. 9 and Table 3, respectively. Results for
the existing condition and existing condition with late-
drawdown scenarios are identical. In both scenarios,
sedge meadow is the predominant community type,
though grassland, riverine forest, and willow forest are
prominent. In the full-drawdown scenario, grassland is
the predominant community type. The expansion of
grassland is largely at the expense of riverine forest.

Sedge meadow, willow forest, and emergent marsh are
only slightly reduced. In the full-pool scenario, willow
forest and emergent marsh are the predominant com-
munity types, while grassland, riverine forest, and
sedge meadow are all greatly reduced.

DISCUSSION

Model utility

This linked groundwater and vegetation model is a
practical approach to understanding the behavior of
riverine and reservoir-fringe systems and to generating
hypotheses about the way that riverine and reservoir-
fringe systems might develop under different reservoir
operations. The linked groundwater and vegetation
model relies upon standard techniques in hydrogeol-
ogy, plant ecology, and statistical analysis. Input data
are reasonably easy to obtain. The construction of the
linked groundwater and vegetation model can be time
consuming. However, multiple simulations can be run
efficiently once the linked groundwater and vegetation
model is constructed.

The modeled vegetation distributions represent equi-
librium conditions given sufficient yet indeterminate
time for community type changes to occur. Response
times vary by species or functional group. Herbaceous
species might respond on the scale of years, while
woody species might respond on the scale of decades.
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FIG. 9. Geographic extent of each community type from the Bayesian model selection procedure (a) for the existing
condition, and for the existing condition with (b) late-drawdown, (c) full-drawdown, and (d) full-pool scenarios.
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TABLE 3. Geographic extent of each community type under each scenario from the Bayesian
model averaging procedure.

Community
type

Existing
area (ha)

Existing with
late drawdown

area (ha)
Full drawdown

area (ha)
Full pool
area (ha)

Grassland
Riverine forest
Sedge meadow
Willow forest
Emergent marsh

5.16 6 1.71
3.35 6 2.04
6.26 6 3.49
3.74 6 2.66
1.70 6 1.33

5.16 6 1.71
3.35 6 2.04
6.26 6 3.49
3.74 6 2.66
1.70 6 1.33

8.16 6 2.24
1.40 6 0.81
6.22 6 3.27
3.22 6 2.39
1.22 6 1.09

3.65 6 0.76
1.17 6 0.84
4.38 6 2.42
5.26 6 3.32
5.75 6 2.40

Note: Values are means 6 1 SD.

Thus, the distributions of grassland, sedge meadow,
and emergent marsh might change rapidly in response
to changes in reservoir operations, while the distri-
butions of riverine forest and willow forest might re-
main unchanged for many decades in spite of changes
in reservoir operations. Given sufficient prior knowl-
edge, the prior probability term, discussed in greater
detail below, could be used to model changes in veg-
etation distributions due to changes in reservoir op-
erations over specified lengths of time. This was not
pursued in this effort since the objective was not to
understand specific species responses to specific chang-
es in reservoir operations but, rather, to understand the
behavior of riverine and reservoir-fringe systems and
to generate hypotheses about the way that riverine and
reservoir-fringe systems might develop under different
reservoir operations.

Vegetation responses were modeled at the commu-
nity-type level. However, vegetation tends to respond
individualistically, and individualistic responses might
be more appropriately modeled at the population level.
The basic modeling approach described herein could
be used to model vegetation responses at the population
level. However, separate vegetation models would need
to be constructed for each of the 62 species observed
on the site, and the presentation and synthesis of the
ensuing modeled results would be cumbersome and of
uncertain management value. Furthermore, populations
would almost certainly be clustered in the same general
community types. For example, Bromus hordea-
ceous—the most prevalent species in the grassland—
would not be clustered with Typha domingensis—the
most prevalent species in the emergent marsh—in any
conceivable model scenario. Rather, Bromus hordea-
ceous would continue to be clustered with Centaurea
solstitialis—the next most prevalent species in the
grassland—in all model scenarios. Thus, modeling
community-type responses is both convenient and jus-
tifiable in this case.

Groundwater and flooding as primary
and secondary gradients

The vegetation model assumes that existing vege-
tation distributions are in equilibrium with a primary
environmental gradient, that being depth to ground-
water. This assumption is typically valid for wetlands

where vegetation can be stressed by drought or soil
saturation and associated root zone anoxia (Mitsch and
Gosselink 1993). Shallow groundwater is critical in the
recruitment and persistence of many riparian species
(McBride and Strahan 1984, van Splunder et al. 1995,
Stromberg et al. 1996, Mahoney and Rood 1998, Scott
et al. 1998, Amlin and Rood 2002). Furthermore, oaks,
maples, and eucalypts selectively use groundwater
even when stream water is readily available, though
the mechanisms and reasons for this phenomenon re-
main unclear (Dawson and Ehleringer 1991, Mensforth
et al. 1994). The results presented herein indicate that
vegetation distributions on the site are largely in equi-
librium with depth to groundwater. The five community
types occupy different locations on the mean depth to
groundwater during the growing season gradient (Fig.
7). This is not merely coincidence, since the individual
species that comprise these community types form
functional groups, with obligate upland species on the
dry end of the gradient and obligate wetland species
on the wet end of the gradient (Table 1).

In some previous efforts, stream stage has been used
in part as a surrogate for the water table (Auble et al.
1994, Primack 2000). This would be a poor assumption
in this case since hydraulic heads under the delta are
largely controlled by reservoir operations (Fig. 5). The
groundwater backwater effect caused by the imposed
reservoir stage creates a stable, shallow groundwater
environment under the delta that is largely unaffected
by changes in stream stage and/or regional groundwater
pumping (Rains 2002). Thus, in this case, a ground-
water model is required, particularly since the region-
ally unique community types are largely restricted to
the delta.

If there were no riverine wetlands on the site—if,
for example, there were only depressional, slope, la-
custrine fringe, and/or poorly drained flat wetlands—
then vegetation distributions might be modeled effec-
tively solely as functions of depth to groundwater.
However, the recruitment of some riparian species is
facilitated by flood disturbance since flood disturbance
scours existing vegetation and deposits coarse-grained
deposits, both of which provide favorable conditions
for the recruitment of pioneer species (McBride and
Strahan 1984, Stromberg et al. 1991, Auble and Scott
1998). Most of the observed species also are commonly
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observed in upland or non-riverine wetland systems
(Hickman 1993, Sawyer and Keeler-Wolf 1995). Flood-
ing, therefore, does not appear to be essential to the
recruitment of most of the observed species. Regard-
less, riverine forest only occurs on recent flood deposits
such as active floodplains, natural levees, and crevasse
splays. Thus, riverine forest appears to require flood-
ing, possibly due to the fact that frequent flooding cre-
ates a complex mosaic of surfaces that support high
species richness and diversity (Fig. 6) and highly var-
iable functional groups (Table 1).

Bayes’ theorem is based upon axioms of probability
theory that are well established and beyond debate
(Hoeting et al. 1999, Wasserman 2000). Applications
of Bayes’ theorem, however, are somewhat controver-
sial. The controversy centers on the prior probability
term, since it is often unclear how prior knowledge can
be converted into a secondary function that appropri-
ately modifies a primary function. In this approach, a
conservative approach is employed: flooding is used as
a binary switch that is switched on for nodes that can
flood and switched off for nodes that cannot flood.
When the switch is on, riverine forest is allowed to
occur; when the switch is off, riverine forest is not
allowed to occur. Thus, flooding is simply a prereq-
uisite that must be satisfied before riverine forest can
occur. The remainder of the vegetation distributions are
dependent solely upon the mean depth to groundwater
during the growing season.

Certainly, other factors—such as competition, her-
bivory, and fire—can play important roles in vegetation
distributions. By taking an empirical approach, the ef-
fects of other physical and biological factors are in-
corporated into this model effort. The basic assumption
is that other physical and biological factors modify
existing vegetation distributions along the primary and
secondary gradients of mean depth to groundwater dur-
ing the growing season and flooding. The primary and
secondary gradients change as functions of changes in
reservoir operations, but the modifying effects of other
physical and biological factors remain constant. For
example, the same competitive interactions occur, but
the locations where these competitive interactions oc-
cur and the locations of the associated modified com-
munity type boundaries change as functions of changes
in the underlying primary and secondary gradients.

Definition of the growing season

The growing season was defined as being from Feb-
ruary to August, since field observations indicated that
this interval encompassed the growing seasons for most
of the species on the site. However, growing seasons
vary by species, with some species having shorter
growing seasons and some species having longer grow-
ing seasons. A sensitivity analysis was conducted to
see if changes in the timing and duration of the growing
season resulted in substantial changes in modeled veg-
etation distributions. The existing-condition scenario

was simulated for all nine possible growing seasons
that begin in January, February, or March and end in
July, August, or September. Modeled vegetation dis-
tributions under all nine simulations were essentially
identical.

The importance of microtopographic relief

In this application, elevations were assigned to 0.10-
ha blocks, which smoothed local but important micro-
topographic lows. An abandoned channel, for example,
is located on the delta and is a location in which small
areas of sedge meadow, willow forest, and emergent
marsh occur. The abandoned channel is too small to be
modeled given the lack of fine-resolution topographic
data. Thus, this local but important microtopographic
low is generally under-represented in the model.

Finer-resolution microtopographic data could be ob-
tained by field or remote-sensing techniques. However,
node spacing would need to be ;3 m, with each node
representing 0.001 ha, to account for the abandoned
channel on the delta. Thus, the model domain would
need to contain more than 10 000 nodes, each of which
would need to be assigned a ground surface elevation.
Obtaining this level of precision and accuracy by field
surveying would be time consuming, while obtaining
this level of precision and accuracy by remote-sensing
techniques such as light detection and ranging (LIDAR)
or interferometric synthetic aperture radar (IfSAR)
would be less time consuming but much more expen-
sive.

The expense and effort of obtaining finer-resolution
microtopographic data are not justifiable in this case.
The abandoned channel is ;400 m in length and 3 m
in width. The abandoned channel, therefore, covers
;0.12 ha of the 20.20-ha model domain. Perhaps 75%
(;0.09 ha) supports sedge meadow in a grassland or
sedge meadow matrix. The remaining 25% (;0.03 ha)
supports willow forest or emergent marsh in a sedge
meadow, willow forest, or emergent marsh matrix.
These areas are extremely small, particularly when con-
sidered with respect to the larger areas already modeled
as sedge meadow, willow forest, and emergent marsh
(Fig. 9, Table 3).

Model simulations

The groundwater backwater effect is a function of
imposed reservoir stage and groundwater recharge
from up-gradient sources. Reservoirs are constructed
in valley-bottom positions where groundwater dis-
charge occurs. When reservoirs are filled, imposed res-
ervoir stages can be higher than local hydraulic heads
and groundwater discharge to inundated areas can no
longer occur. This has little to no effect on the rates of
groundwater recharge from up-gradient sources. This
incoming groundwater recharge accumulates in shal-
low groundwater storage prior to discharging at or near
the reservoir fringe. This creates a stable, shallow
groundwater environment on the reservoir fringe. This



February 2004 205EFFECTS OF RESERVOIR OPERATIONS

groundwater backwater effect can be inferred from pre-
vious studies of reservoirs (Cady 1941) and estuaries
(Harvey and Odum 1990). Theoretical model results
that predict this effect require that the depth of the local
groundwater flow system be small relative to the width
of the surface water body (McBride and Pfannkuch
1975). The site satisfies this requirement since the local
groundwater flow system is ;3 m deep while East Park
Reservoir directly down gradient is ;500 m wide.

The groundwater backwater effect caused by the im-
posed reservoir stage is largely confined to the delta.
This is consistent with previous hydrometric obser-
vations (Fig. 5; Rains 2002). Thus, changes in reservoir
operations have few effects on modeled vegetation dis-
tributions on the terrace but can have pronounced ef-
fects on modeled vegetation distributions on the delta.
Reservoir operations have been reasonably constant for
many years, with rapid recharge early in the wet season
and slow drawdown in the late wet and early dry sea-
sons. Reservoir operations cease to affect shallow
groundwater and associated vegetation in the model
domain when the reservoir is drawn down to ;364.50
m. At 364.50 m, reservoir storage is ;54 150 000 m3,
86% of the approximate full-pool storage of 62 771 000
m3. In an average year, mean reservoir stage exceeds
364.50 m only during the months of March through
June. This is why modeled vegetation distributions for
the existing condition and existing condition with late-
drawdown scenarios are identical.

Modeled vegetation distributions under the full-
drawdown scenario are largely functions of the existing
topographic relief. Grassland is the default community
type throughout most of the valley, occurring exten-
sively up and down valley of the reservoir. One might
expect, therefore, for most of the model domain to
revert to grassland under the full-drawdown scenario.
However, sedge meadow, willow forest, and emergent
marsh persist in the full-drawdown scenario on scoured
surfaces on the upper and middle delta. These scoured
surfaces are the abandoned floodway and abandoned
channel that can be seen in various stages of devel-
opment in serial aerial photographs dating back to
1948. The reservoir had to exist for these scoured sur-
faces to develop, but the reservoir need not continue
to exist for these scoured surfaces to continue to sup-
port sedge meadow, willow forest, and emergent marsh.
Meanwhile, grassland replaces some sedge meadow
and riverine forest on depositional surfaces on the low-
er delta and the near-channel area. These depositional
surfaces are largely the natural levees and crevasse
splays that also can be seen in various stages of de-
velopment in serial aerial photographs dating back to
1948.

Modeled vegetation distributions under the full-pool
scenario are largely functions of the groundwater back-
water effect and the existing topographic relief. The
scoured surfaces on the upper and middle delta are
located in the off-channel area so the shallowest

groundwater and the wettest community types extend
in a lobe up the valley in the off-channel area. Sedge
meadow, willow forest, and emergent marsh replace
riverine forest on the natural levees and crevasse
splays. The lower end of the model domain becomes
emergent marsh with a fringe of willow forest. The
expansion of the emergent marsh could enhance ex-
isting populations of the Tricolored Blackbird, since
Tricolored Blackbirds preferentially nest in emergent
marshes dominated by cattails (Typha spp.) and tules
(Scirpus spp.) (Neff 1937, DeHaven et al. 1975). How-
ever, the loss of the riverine forest on the delta could
diminish other wildlife populations.

Management implications

Changes in reservoir operations can have pro-
nounced effects on shallow groundwater and associated
vegetation distributions in riverine and reservoir-fringe
systems. However, vegetation distributions in deltaic
environments are somewhat resilient to change. Deltas
have erosional environments, such as floodways and
channels, and depositional environments, such as nat-
ural levees and crevasse splays. These erosional and
depositional environments may provide refugia for
vegetation to occupy under different reservoir opera-
tions. For example, erosional environments may sup-
port wetland species even under full-drawdown con-
ditions, while depositional environments may support
upland species even under full-pool conditions. Thus,
each community type may persist, though the precise
areas and locations of each community type may
change. Nevertheless, the effects of changing reservoir
operations must be considered or other elements of an
overall management strategy (for example, reducing
livestock grazing and/or planting additional vegetation
to promote the expansion of existing plant and wildlife
habitats) could fail to meet their desired objectives.
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